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ONE APPROACH TO CALCULATING A TURBULENT BOUNDARY LAYER 

ON A SURFACE WITH A COMPLIANT COATING 

A. B. Airapetov UDC 532.526.4 

A method is proposed for calculating a turbulent boundary layer on a surface with 
a viscoelastic coating. The method is based on the introduction of the van Driest 
damping function to account for the effect of the coating on the boundary layer. 

It is now considered proven that the application of a layer of viscoelastic (elastic, 
compliant) material to the surface of a body moving in a liquid or gas may lead to a 50-60% 
reduction in the drag associated with the body. This has been confirmed by several experi- 
ments with different types of coatings (we may recommend the survey [i], which contains an 
extensive bibliography). At the same time, there are studies in which the investigators not 
only failed to find a reduction in drag, but in fact observed the reverse effect. 

Theoretical study of a turbulent boundary layer on such surfaces is complicated not only 
by transient boundary conditions, but also by a lack of detailed knowledge of the dynamics 
of viscoelastic materials. Only in the most recent works [2, 3] have attempts been made to 
take a combined approach to this problem. 

Friction on a solid surface is limited by the interaction of turbulent and viscous trans- 
fer near the surface. One effective approach to accounting for the interaction of viscous 
and turbulent transfer in a turbulent boundary layer close to a solid surface is the intro- 
duction of so-called damping functions, reflecting the dynamics of pulsations in a viscous 
fluid. Such functions have been obtained by different methods by Loitsyanskii, Vulis, and 
van Driest [4] for a boundary layer on a flat plate. For example, van Driest proposed a 
structural form of damping function for the length of the displacement path I in a plane 
boundary layer on the basis of an analysis of harmonic oscillations of an infinite flat plate 
in an unbounded incompressible viscous fluid (the Stokes problem) decaying as they penetrate 
into the fluid according to the law exp[--y(~/~)~/2], where m is the frequency of the oscilla- 
tions; ~ is the kinematic viscosity coefficient of the liquid: 

l + = • (y+), F (y+) = 1 -- exp ( - - y+ /a ) ,  (i) 

where y+ = yu,/~; ~ = 0.4; a = 26 are universal empirical constants. 

Further, several authors used van Driest's idea as a basis for constructing damping 
functions for certain more complex flows (turbulent boundary layer on porous flat [5] and 
cylindrical [6] surfaces). 

The attractiveness of van Driest's idea derives first of all from the fact that well- 
known solutions of the Navier--Stokes equations are used (in one form or another) to construct 
a structural form of damping function for a given complex turbulent flow. In such a situa- 
tion, it would be of interest to construct a damping function of the van Driest type which 
would convey information on the properties of the viscoelastic coating mentioned earlier. 
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This would make it possible to reduce the problem of calculating the turbulent boundary layer 

to using well-known methods (see [4~, with almost no change in the algorithms of the latter. 

The present work proposes the construction of a structural form of damping function on 
the basis of an analysis of natural oscillations of a liquid next to a well in the case where 
the oscillations are related to the propagation of traveling-wave-type perturbations over the 
surface of a layer of viscoelastic material (on a flat hard plate). 

i. We examine the motion of a viscous incompressible liquid next to an infinite flat 
plate covered by a layer of viscoelastic isotropic material of constant thickness h. 

The motion of the liquid is described by the Stokes--Navier equations: 

the continuity equation 

Ou Ou Ou 1 8p 
o - - F + u ~ x  + v  - og 9 ox +vhu, (2) 

Ov Ov Ov 1 Op +rAy ,  
0-7 + u--~-f + v - Og P Og (3) 

Ou + Ov = 0 (4) 
Ox Og 

and a system of boundary conditions in the outer flow and conditions of adhesion of the coat- 
ing to the surface: 

u(x ,  V =  ~ ,  t ) = U  , ( 5 )  

u(x ,  y = v~(t) ,  t) = ~ ,  (6) 

v (x, v = ~ (0 ,  t) = ~ ,  ( 7 )  

where Yc(X, t), Uc, v c are unknown perturbations of the form of the coating and values of 
velocity components of the coating, which must be determined in accordance with the equa- 
tions of motion of the liquid and viscoelastic medium and the kinematic relation. 

0 ~  0 ~  ~ - -  + ~  
Ot Ox (8) 

Let us represent the sought quantities u, v, and p in the form of sums 

U = U  ~  i, V = V  ~  i, p = P ~  (9) 
the first terms of which represent components of velocity and pressure next to the hard 
plate. The second terms represent complements connected with the presence of the viscoelas- 
tic coating. 

It is clear from physical considerations that the magnitude of the surface perturbation 
Yc should be small (less than the thickness of the viscous sublayer): Yc = el(x, t), ~<< i, 
so that naturally we should try to find a solution of the problem in the form of expansions 
in the small parameter e: 

u t = e u  I + e2u~ + . . . .  v' . . . . .  pt . . . .  (i0) 

As migh t  be e x p e c t e d ,  s u b s t i t u t i o n  of  (9)  and t h e  e x p a n s i o n s  (10) i n t o  ( 2 ) ,  (3) l e a d s  i n  a 
first approximation to the Stokes--Navier equations for flow next to a solid boundary; in a 
second approximation it leads to the linear problem of perturbed motion. Similarly, we may 
obtain the boundary conditions for perturbed motion: 

u I ( x ,  ~ ,  t ) =  o, v{ (x, ~ ,  t ) =  o, 

o, t ) = - t (  ~176 ) = _  
Og / v -o  pv  [ -  - -  - -  f ' 

- ~ ( l l )  

where T O is the shear stress on the hard plate; u, is the dynamic velocity. In deriving the 
boundary conditions at y = 0, it was assumed that the viscoelastic coating does not undergo 
displacements along the x axis (u c = 0), since experimental studies [7] show that the magni- 
tude of shear stress pulsations on a wall in a turbulent boundary layer are at least one or- 
der lower than the magnitude of the pressure pulsations. 
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Direct solution of a system of perturbation equations together with transient boundary 

conditions is a problem which is unjustifiably complex for the purpose of obtaining a "struc- 
tural" type solution. In connection with this, it is expedient to make certain simplifying 
assumptions. For example, it may be assumed that the pressure pulsation on a viscoelastic 
surface is the same as on a rigid surface: pl(x, O, t)=p~ O, t). 

It was shown in an experiment in [8] that the wave-frequency spectrum of the pressure 
pulsations in a turbulent boundary layer has a fairly distinct maximum and that the mode 
corresponding to this maximum can be represented in the form 

P~ = P0 exp (iXx - -  i~t), 

where Z ~ 0.42/6"; ~0.35/6"; 8" is the displacement thickness; Po is a characteristic measure 
of the pressure pulsations in the boundary layer, such as the standard deviation of the pres- 
sure on the wall p~=[(p~ 

It should be noted that our selection of a single traveling wave as the form of the 
pressure perturbation does not disturb the generality of the formulation by virtue of the 
linearity of the problem being examined; the perturbation may be represented, e.g., by a 
train of traveling waves with an appropriate frequency spectrum. The latter case would in 
fact more accurately reflect the actual situation in a turbulent boundary layer. 

For a high-frequency perturbation such as the one being examined, the inertial terms in 
the equations of perturbed motion may be neglected in relation to the transient and viscous 
terms, Thus, the equations of the approximation under discussion will have the form 

Ou I l a p  I 
O---t- - p Ox + ~Au], 

1 0 1  
at - p av + '~Avl' 

a.l 
ax + O.e =- O. (12) 

Differentiating the first of these equations with respect to x and the second with re- 
spect to y and adding, we can obtain the equation for pressure 

Apl (X, V, t ) =  0, (13) 

the boundary condition for which is 

p~ (x, 0, t) = Po exp ( i Z x - -  iQt). (14) 

Equa t ions  (13) ,  (14) c o n s t i t u t e  the  wel l-known D i r i c h l e t  problem fo r  an upper h a l f  p lane  and 
have the exact solution: 

Pl (x, y, 0 = P0 exp (i%x-- i~t-- Xy). 

2. A traveling wave from a pressure perturbation causes a corresponding, as-yet-unknown 
perturbation of the form of the boundary Yc(X, t) so that the boundary conditions (ii) are 
indeterminate at this stage. As an equation for Yc, we propose to use an equation satisfying 
one of the simplest models of a viscoelastic medium and qualitatively describing the proper- 
ty of elastic aftereffect -- the Kelvin--Foight model [9]. In accordance with this model, the 
medium is a set of elements including a Hookean solid (characteristic modulus of elasticity 
k) and a damper (characteristic viscosity coefficient n) (Fig. i). 

Thus, the equation of wall deformation according to Kelvin-Foight will have the form 

air r~f 
m + n ~ + kf  -- Po exp (i~x - -  i~1), 

at2 (15) 

where m -- PcAs is the effective mass of a unit area of the coating; As, effective thickness 
of the oscillating layer, for which we will take the thickness of the Stokes layer A s = 
(n/Pc~) i/2 if A s < h and A s = h if (n/Pc ~I/2 > h). 

Given the above formulation, it is to be expected that the surface pressure perturba- 
tion induced by the traveling wave will have the same form as the wave, with the same 
parameters: f ( x ,  / ) =  Y e x p ( i ~ . x - - i Q t ) ,  Y =  Y r - l - i Y , ,  Meanwhile, the amplitude Y should be de- 
termined from (15). Substitution of f(x, t~ in (15) gives ms 
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Fig. i. Diagram of flow and Kelvin--Foight model of visco- 
elastic coating. 

Fig. 2. Curve of the function2As@(~).As=0.1 . 

~2--1 D~ 
Yr = A , Y i = - - A  , 

(~2 _ 1)z + DZ$ (~ __ l)Z + D2~2 

where A = po/m~2; fl~ = k/m is the natural vibration frequency of the coating; ~ = ~o/~; D = 
n/n~2o is the damping factor, D = As/E. 

3. In the dimensionless variables x = x/L, ~ = Y/~s, ~ = ~t, u = u/U~, p ffi P/Po, the 
equation for u from (12) takes the form (bars omitted) 

au ~Px ~ 02u aZu = - -  oc + + -  
at  Ox 2 at42 ( 1 6 ) 

Here L = iI~ is the wavelength of the surface perturbation; ~s = (vl~)Zl ~, Stokes scale in 
the liquid; p=--p~; u---u~; ~ = po/pU~.f2L; ~ --- 5s/L~. 0.SRe* ; Re*, Reynolds number, determined from 
the displacement thickness. A solution of (16) satisfying boundary condition (i0) and finite 
at y = q~o has the form 

where 

A, = ~---~--(]//V-1-t- Ig' q- 1 -q- VVI  + 1 5 ' - - 1 ) "  

As can be seen, the solution consists of two traveling waves with an amplitude which decays 
along y, the amplitude of the second wave here decaying more rapidly (8--A r > B > 0). 

It can thus be proven that the character of pulsation damping is determined by the law 
of decay of the amplitude of the second wave. 

4. By virtue of the fact that the perturbations introduced into the elastic surface 
are small, we may represent the damping function in the form of the sum of the functions for 
the base and perturbed flows: 

F(Y+) = l _ e x p ( _ g + / a ) _ [ l _ e x p ( _ O A ~ g + ) ] (  u~ + po~ ~ Po ~(~),  \ ~U| p~ I PeAs~U| 

where @(~)=(~2--1)/[(gZ--l)2+A~] (Fig. 2), y+=yU./v; 0=(w~)I/2/U.. Here, the first two terms 
represent the normal van Driest function for a boundary layer on a hard surface (i): AFis 
a complement connected with the presence of the viscoelastic surface and vanishing as the 
coating degenerates into a rigid surface (k § ~). 
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Fig. 3. Length of displace- 
ment path for the case of a 
hard plate [van Driest formu- 
la (i)] and four variants of 
coating. 

The form of F(y +) shows that the effect of the coating parameters on the length of the 
displacement path /+(y+) =• +) and, thus, on turbulent friction is ambiguous in character 
and is determined by the interaction of the natural vibration frequency of the coating no 
and the characteristic frequency of the pressure pulsations. Consequently, the effect will 
always be positive (friction will decrease) when 2>I (~0>~) and negative in the opposite 
case. The magnitude of the effect is determined by all of the parameters of the problem, 
and it is not difficult to see that there exists a relationship between these parameters for 
which the effect will be maximal: 

Thus,  even a q u a l i t a t i v e  a n a l y s i s  o f  t h e  p r o p o s e d  method i l l u m i n a t e s  t h e  p o t e n t i a l  f o r  
o b t a i n i n g  c o n f l i c t i n g  r e s u l t s  i n  d i f f e r e n t  e x p e r i m e n t s ,  s i n c e  t he  i n t u i t i v e  n a t u r e  o f  t he  
s e l e c t i o n  o f  a c o a t i n g  m a t e r i a l  and i m p r e c i s e  and i n c o m p l e t e  e m p i r i c a l  d e t e r m i n a t i o n  o f  i t s  
c h a r a c t e r i s t i c s  can g u a r a n t e e  t he  s e l e c t i o n  o f  a s u c c e s s f u l  c o m b i n a t i o n  o f  c o a t i n g  and f low 
p a r a m e t e r s  o n l y  w i t h  a s p e c i f i e d  p r o b a b i l i t y .  

Approx ima te  n u m e r i c a l  r e s u l t s  a r e  shown in  F i g .  3 f o r  t he  c a s e  o f  a f low o f  a i r  (U = 
40 m/set, Po = 4 N/m a, u*~0.5 m/see) over four types of coatings: i) polyurethane foam 
(E = 2.104 N/m 2, Po = 30 kg/m 3, n/p c = 30 kgf/m 2) of 0.07 m thickness (point 1 on curve 1 in 
Fig. 2); 2) same material but of 0.01 m thickness (point 1 on curve 2 in Fig. 2); 3) molded 
polyurethane foam (E = 8.103 N/m 2, Pc = I02 kg/m3) of 0.03 m thickness (point 3 on curve 3 in 
Fig. 2); 4) conventional heated polyurethane foam (n T = 0.8 nTo)* (point 4 on curve 4 in 
Fig. 2). 

Apart from the basic possibilities of the method, the path of the curves demonstrates 
the effect of such parameters as the thickness of the coating -- chosen in experiments with 
regard for processing considerations -- or temperature -- which is generally not controlled. 
As can be seen, the effect may prove to be positive, ambiguous, or adverse. 

NOTATION 

x, y, Cartesian coordinates; u, v, velocity components along the axes x, y~ p, pres- 
sure; m, n k, parameters of the Kelvin--Foight model representing the density, viscosity, and 
elasticity of the coating material; F, van Driest damping function; A, Laplace operator. 
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NUMERICAL SOLUTION OF A TWO-DIMENSIONAL PROBLEM OF THE TRANSIENT 

HYDRODYNAMICS OF A COMPRESSIBLE NON-NEWTONIAN FLUID 

S. D. Tseitlin UDC 532.135 

A solution is presented for a transient two-dimensional problem of the hydrody- 
namics of a compressible non-Newtonian fluid connected with the propagation and 
damping of shock waves in a well. 

The physical processes connected with well drilling have been studied in increasing de- 
tail in recent times, a fact related to the seriousness of the consequences of emergency 
situations at oil and gas extraction sites. Theoretical study of the hydrodynamics of wells 
is complicated by the need to solve problems for non-Newtonian fluids -- which includes most 
drilling fluids. Here, most of the work that has been done has examined unidimensional and 
quasi-unidimensional hydrodynamic problems, with investigators neglecting or averaging two- 
dimensional and nonlinear effects [i, 2]. 

Examined below is a two-dimensional transient problem of the hydrodynamics of a com- 
pressible non-Newtonian fluid with allowance for several nonlinear phenomena which might ex- 
ert a marked effect in the generation and propagation of shock waves in long channels. We 
chose for the form of the rheological equation a relation describing shear stress as an 
exponential function of shear rate, which is a good approximation for most drilling fluids. 

Given this model, we may study a whole range of problems of dynamics connected with the 
opening up of beds with pressure anomalies, the closing of pipe connections, start-up of 
pumps, lowering and raising of drilling equipment, etc. Here, we examine the first of these 
problems and solve it by the method of fractional steps [3] on an R-1040 computer. 

The unsteady motion of a non-Newtonian fluid is described by the following dynamic equa- 
tion [4, 5]: 

av 
p--~- + ~vv.v = - - v P  + d i v e +  Og. (1) 

In the'case of a compressible fluid, apart from the shear stresses, the viscous stress tensor 
should also account for linear strain [4], i.e., 
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